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1. Introduction

Much has been written about brane world solutions to chiral gauged 6D supergravity.

Gibbons, Güven and Pope (GGP) [1] found a wide class of such solutions, with 4D Poincaré

symmetry and axial symmetry in the transverse dimensions. Surrounding work focusing

on the brane world interpretation of these backgrounds was made in [2, 3]. Other classes of

solutions have also been found, including those which break the axial symmetry [4], activate

the hyperscalar fields [5], have 4D de Sitter/anti de Sitter slicings [6] or time-dependent

behaviour [7 – 9]. The model additionally admits string solutions having dyonic charges,

with trivial [10] or active [11] hyperscalars. All these backgrounds are interesting because,
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among other things, they provide a framework in which to build cosmological models (for

a review see [12]).

In order for these backgrounds to be phenomenologically relevant, however, we would

like them to be stable against small perturbations.1 So far, the GGP solutions have proven

to be classically marginally stable, despite the fact that they all but one (i.e. the sphere-

monopole limit) break supersymmetry (see [13], and also [14 – 16]). Meanwhile, we might

also want to consider the 6D theory to be a low energy approximation to some consistent

theory of quantum gravity, such as string theory. If this is the case we must insist on

certain consistency constraints, and in particular, since the theory is chiral, we must insist

on anomaly freedom.

In general, chiral 6D supergravity suffers from a breakdown of local symmetries due

to gravitational, gauge and mixed anomalies. For certain gauge groups and hypermultiplet

representations these anomalies can be cancelled via a Green-Schwarz mechanism [17]. This

is entirely analogous to what happens in 10D, where the anomalies cancel only for a few

models, namely those with gauge groups: SO(32), E8 × E8, E8 × U(1)248 and U(1)496. In

6D the consistency constraints are weaker, and by now a number of anomaly free models

have been discovered [17 – 20]. In table 1 we present three of the known examples which

have a large enough gauge group to include the Standard Model of Particle Physics.

The structure of these anomaly free models seems suggestive that some of them may

indeed be somehow related to critical string theory or M-theory [21]. Meanwhile, with

regards to the stability of the brane world compactifications, the extra degrees of freedom

required for anomaly cancellation cannot be ignored. Marginal stability was affirmed in [13],

for the GGP solution in the Salam-Sezgin model, which has just an Abelian U(1)R gauge

group and no hypermatter. We now ask if there is a similar dynamics in anomaly free

models, which have larger field contents.

To this end, we may draw some lessons from the old literature on sphere compact-

ifications, which are supported by monopole backgrounds [22]. The stability of sphere

compactifications for nonsupersymmetric theories was studied in [23, 24], and for anomaly

free supergravity theories in [17 – 19]. Whilst the models are stable in the presence of just

a Maxwell gauge group, for Yang-Mills theories a tachyonic instability is generically found

in the scalars descending from the gauge fields and charged under the U(1) monopole back-

ground [24]. For example, it turns out that only one of the anomaly free models presented

in table 1 has a stable sphere compactification if the U(1) monopole is embedded in a

non-Abelian factor of the gauge group: the E7 × E6 × U(1)R model with the monopole

embedded in E6 [17, 19, 25].

Our main focus in the present work is then on the scalar perturbations of the gauge

fields charged under the U(1) monopole background, as possible sources of instability. We

analytically solve the linearized dynamics of these fields, and in particular derive their full

Kaluza-Klein mass spectra. In this way we are able to identify some conditions for stability,

and we observe the previous behaviour as well as some surprises.

Our results can be summarised as follows. Conical-GGP solutions which incorporate

1Or at least not to exhibit runaways that are too fast.
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Gauge Group Hyperino Representation

E7 × E6 × U(1)R (912,1)0
E7 × G2 × U(1)R (56,14)0
F4 × Sp(9) × U(1)R (52,18)0

Table 1: Some examples of anomaly free models with gauge groups containing SU(3) × SU(2) ×
U(1) [17 – 19]. There are also many other models, including e.g. one with just an Abelian U(1)R

gauge group, and the anomalies cancelled by 245 neutral hypermultiplets [20].

only positive tension brane sources are stable only for very special matter contents and

monopole embeddings. Specifically, the stability criteria observed in the sphere limit per-

sists for these more general solutions. The sphere’s stability criteria is also sufficient to

ensure stability for conical-GGP solutions in the presence of negative tensions (placed on

orbifold fixed points). However, remarkably, we find that negative tension branes can relax

these conditions, and render unstable sphere compactifications stable.

Let us end with an overview of the paper. In section 2 we briefly review the theory

and its warped, axially symmetric brane world solutions. We also discuss some physical

aspects of the background, in particular emphasising that the geometry induced by the

backreaction of negative tension branes is well-defined. Then, in section 3 we classify all

the scalar perturbations present in the model and identify how the various sectors decouple.

We argue that possible tachyonic instabilities should lie in the scalar fluctuations of the

gauge fields orthogonal to the background monopole in the Lie algebra of the gauge group.

Therefore, we turn in section 4 to the Kaluza-Klein mass spectra of these fields, and

dedicate section 5 to the consequences of these spectra for the stability. We end with some

conclusions, and leave for the appendices some details on the algebra.

2. 6D supergravity and its axially symmetric solutions

In order to fix our conventions, we begin by reviewing the 6D chiral gauged supergravity

and brane world solutions that interest us. Then, in the following subsection, we will

collect some details about the background geometry and topology which will later prove

to be important.

2.1 The theory and solution

We consider 6D supergravity with a general matter content, whose gauge group G is a

product of simple groups that include a U(1)R gauged R-symmetry. For example we could

take the anomaly free group G = E7 ×E6 ×U(1)R, under which the hyperinos are charged

as Ψ ∼ (912,1)0 [17]. The bosonic action takes the form2 [26]

SB =

∫

d6X
√
−G

[

1

κ2
R − 1

4
∂Mσ∂Mσ − 1

4
eκσ/2Tr

(

FMNFMN
)

2We choose signature (−, +, . . . , +), and define R = GMN (∂P ΓP
MN − ∂MΓP

PM + . . .). The index M runs

over 0, 1, . . . , 5. For fermionic terms see [26].
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−κ2

48
eκσHMNP HMNP − gαβ(Φ)DMΦαDMΦβ − 8

κ4
e−κσ/2v(Φ)

]

, (2.1)

where κ represents the 6D Planck scale and g is the gauge coupling constant, which in

fact represents a collection of independent gauge couplings including that of the U(1)R
subgroup, g1. The field σ is the dilaton, FMN is the field strength of the gauge field, AM ,

and HMNP is the Kalb-Ramond field strength, which contains a Chern-Simons coupling

as follows:3

HMNP = ∂MBNP + Tr
[

FMNAP − g

3
AM (AN ×AP )

]

+ 2 perms. (2.2)

The metric gαβ(Φ) is on the target manifold of the hyperscalars, and here the index α

runs over all the hyperscalars. The dependence of the scalar potential on Φα is such that

its minimum is at Φα = 0, where it takes a positive-definite value, v(0) = g2
1 , due to the

R-symmetry gauging [27, 10].

We refer to [15] for the equations of motion that follow from (2.1). A general class of

configurations with 4D Poincaré symmetry and axial symmetry in the transverse dimen-

sions, is:

ds2 = GMNdXMdXN = eA(ρ)ηµνdxµdxν + dρ2 + eB(ρ)dϕ2,

A = Aϕ(ρ)Qdϕ, σ = σ(ρ),

HMNP = 0 , Φα = 0 , (2.3)

with 0 ≤ ρ ≤ ρ and 0 ≤ ϕ < 2π. Here µ, ν = 0, 1, 2, 3 and Q is a generator of a U(1)

subgroup of a simple factor of G, satisfying Tr
(

Q2
)

= 1.

In the following we shall also use the radial coordinate defined by

ξ(ρ) ≡
∫ ρ

0
dρ′e−A(ρ′)/2, (2.4)

whose range is 0 ≤ ξ ≤ ξ. In this frame the metric reads

ds2 = eA(ξ)
(

ηµνdxµdxν + dξ2
)

+ eB(ξ)dϕ2 . (2.5)

Given the above ansatz, the general solution has been found by GGP [1]. We will focus

on a subset of this general solution, namely that which contains singularities no worse than

conical. The explicit conical-GGP solution4 is then [1]:

eA = eκσ/2 =

√

f1

f0
, eB = α2eA r2

0 cot2(ξ/r0)

f2
1

,

A = − 4α

qκf1
Qdϕ, (2.6)

3We define the cross-product as (AM × AN )Î = f ÎĴK̂A
Ĵ
MA

K̂
N , with f ÎĴK̂ the structure constants of G.

The index Î runs over the full Lie algebra of G, and later we will use I to label those directions orthogonal

to that of the U(1) monopole.
4The coordinate ξ is related to the coordinate r in [1] by r = r0 cot(ξ/r0).
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where q and α are generic real numbers. Also,

f0 ≡ 1 + cot2
(

ξ

r0

)

, f1 ≡ 1 +
r2
0

r2
1

cot2
(

ξ

r0

)

, (2.7)

with r2
0 ≡ κ2/(2g2

1), r2
1 ≡ 8/q2.

The conical-GGP configuration is, however, a solution to the equations of motion only

outside the points ξ = 0 or ξ = ξ ≡ πr0/2. This is because as ξ → 0 or ξ → ξ, the metric

tends to that of a cone, with respective deficit angles

δ = 2π

(

1 − |α| r2
1

r2
0

)

and δ = 2π (1 − |α|) , (2.8)

and corresponding delta-function behaviours in the Ricci scalar. Note that α appears in

the deficit angles only through its modulus, since the metric (2.6) depends only on the

square of α, and so is insensitive to its sign. In order to promote the solution to a global

one, we introduce two 3-brane sources into the system, each with action:

Sb = −T

∫

d4y
√

−det (GMN∂αY M∂βY N ) , (2.9)

where Y M (yα) are the brane embedding fields, yα are the worldvolume coordinates, α =

0, . . . , 3 and the tensions are respectively [28]

T = 2δ/κ2 and T = 2δ/κ2. (2.10)

In this way we arrive at a warped codimension-two brane world construction, in which the

3-branes can localize bulk fields [15] and/or support 4D fields in such a way as to realize

the Standard Model of Particle Physics.

Finally, we note that one can obtain the “rugby ball” compactification [29] simply by

setting r0 = r1. In this case the background value of the dilaton is zero, and therefore

the stability analysis that we are going to present will also be applicable to the rugby

ball solution of non-supersymmetric 6D Einstein-Yang-Mills models. Moreover, we can

smoothly retrieve the sphere compactification by taking r1 → r0 and α → 1.

2.2 Geometry and topology

We continue our discussion on the background configuration by considering in more detail

its geometry. In particular, it is interesting to note that the parameters appearing in the

deficit angles, α and r1, are not fixed by the EOM but rather represent moduli. However,

from (2.8), we can see that the deficit angles are both bounded from above by 2π. This

becomes an upper bound on the brane tensions that can be described by the conical-GGP

solution, because of the matching conditions in (2.10).

Meanwhile it is also clear that the deficit angles can take arbitrary large negative

values. We emphasise here that manifolds with negative deficit angles are perfectly well

defined, and can even be made at home with a piece of paper and a pair of scissors. Take

for example the simplest case of a cone. A cone with positive deficit angle is obtained by
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Figure 1: Construction of a cone and saddle-cone, respectively, by splicing out and in, respectively,

a wedge starting from the flat disk. For the cone, lines that were parallel on the disk remain parallel

until they pass on either side of the apex, when they begin to converge. For the saddle-cone they

diverge once passing the apex. Notice that although the saddle-cone appears to break the axial-

symmetry, this is only an effect of the embedding into 3D. A 2D being would indeed observe the

axial symmetry.

splicing a wedge out of a flat disk and gluing together the edges. Similarly, a cone with

negative deficit angle is obtained by splicing a wedge into a flat disk.5 The result will be

a manifold which is flat everywhere apart from at the apex of the cone. Lines that were

parallel on the disk remain parallel until they pass on either side of the apex, after which

they will begin to diverge, just as for the standard cone they would converge (see figure 1).

Moreover, there is no lower bound on the deficit angle. For example, one could imagine

adding π/3 wedges successively to the flat disk ad infinitum.

Discretized versions of manifolds with negative deficit angles can be found in the solid-

state literature on Carbon Nanostructures, in which nanocones with negative disclination

angles are appropriately named “saddle-cones” [31]. These provide another nice way to

visualize the geometries, including those with, say, deficit angle less than −2π. Referring

to figure 2, we observe that beginning with a flat planar lattice of regular hexagons, and

splicing in a wedge of π/3, one ends with another lattice of hexagons, now taking the form

of a (flat) saddle, and with the central hexagon replaced by a heptagon. A deficit angle of

−π would correspond to a central enneagon, one of −2π to a dodecagon, and so on.

On the other hand, we should note from eq. (2.10) that in our scenario the negative

deficit angles are sourced by negative tension branes. It is well known that negative tension

branes generically suffer from classical and quantum instabilities [32]. We will return to

this issue in the following section.

Having understood the geometry of the model, we must also take care of its topology.

The Euler number of the internal manifold is two, indicating the topology of a sphere. This

5As this manuscript was being prepared ref. [30] appeared, baptizing manifolds with spherical topology

and negative deficit angles as “Apple-like”.
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Figure 2: A nanocone with a disclination angle −π/3. Reproduced from ref. [31] by kind permission

of the authors.

can be seen from direct calculation, as well as by showing that the manifold can be covered

by two holomorphic coordinate patches, which are related at the intersection by z = 1/ζ

(see below). We must therefore take care to ensure that the gauge field background is

well-defined as ξ → 0 and ξ → ξ. Indeed the expression for the gauge field background

in eq. (2.6) is well-defined in the limit ξ → 0, but not as ξ → ξ. We must therefore use

a different patch to describe the ξ = ξ limit, and in the overlap this must be related to

the patch including ξ = 0 by a single-valued gauge transformation. This leads to a Dirac

quantization condition, which for a field interacting with A through a charge e gives

−e
4αg

κq
= −eα

r1

r0

g

g1
= N , (2.11)

where N is an integer that is called monopole number and g is the gauge coupling constant

corresponding to the background gauge field. For example, if A lies in U(1)R, then g = g1.

Generally different fields have different charges ei, which correspond to several monopole

numbers N i; as we shall see this aspect is important in the stability analysis of the conical-

GGP solutions. The charges ei can be computed once we have selected the gauge group,

since they are eigenvalues of the generator Q.

As has long and often been noted, the Dirac quantization leads to a constraint, relating

the tensions of the two 3-branes which can be described by the conical-GGP solution and

the bulk gauge couplings [1]. For example, embedding the monopole in the U(1)R gauge

sector requires the presence of at least one negative tension brane [1, 3].

3. The scalar fluctuations

We now consider scalar fluctuations about the brane world solution, with the aim of study-

ing its stability. The bulk perturbations which are scalars from the brane point of view

can be written as:

{

δGµ
µ, δGρρ, δGϕϕ, δGρϕ, δσ, δζ, δBρϕ , δAρ, δAϕ, δΦ

}

. (3.1)
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Here, δζ is the four-dimensional dual of the fluctuation in the Kalb-Ramond field δBµν .

Moreover, the presence of branes introduces additional dynamical degrees of freedom,

which are the brane-bending modes corresponding to fluctuations in their position in six-

dimensional spacetime:
{

δY M
}

. (3.2)

Let us now discuss these various fluctuations in turn.

3.1 Brane bending sector

As we discussed in the introduction, the main focus of the present paper is the study of

the fluctuations in a sub-sector of the 6D gauge fields which gives rise to instabilities in

the spherical limit. As we shall see, at the bilinear level this sub-sector does not mix

with any of the other fields, in particular it does not mix with the fluctuations in the

position of the branes (3.2). In principle we could concentrate on the relevant gauge sector

right away. However, since we shall also consider negative tension branes we will show

that we can modify our internal space by dividing it by a well defined action of a global

discrete group and thereby eliminating some of the potentially harmful modes. It should

be stressed, however, that our analysis of the fluctuations and the solution of the rather

complex eigenvalue problem will not be affected by this orbifolding. Neither our conclusion

concerning the stability of the aforementioned gauge sub-sector will be affected.

By choosing the so-called static gauge for the worldvolume coordinates, ∂αY µ = δµ
α,

we see that each brane carries two physical fields which correspond to their bending in the

transverse dimensions:

{δY ρ(x), δY ϕ(x)} . (3.3)

We call the 4D fields in (3.3) brane bending modes.6 Notice that these fields are four

dimensional, and so do not lead to a Kaluza-Klein tower.

In general we can expect the brane bending modes to mix with the bulk metric fluc-

tuations at the bilinear level. Moreover, it is well known that negative tension branes can

lead to energies unbounded from below and instability. However, we can choose to place

the branes at orbifold fixed points in such a way that they are not free to fluctuate. An

orbifold symmetry can indeed project out some physical modes, like the brane bending

modes, because it consists of the additional physical condition that the action is invariant

under the orbifold transformations. At the same time, we observe that negative tension

branes do not necessarily lead to instabilities even in the presence of some brane bending

modes, as shown for example in [35, 36]. Therefore, introducing an orbifold that, as we

shall see, project out the brane bending modes might not be necessary to have stability,

even in the presence of a negative tension brane.

To find an orbifold projection that serves our purpose, we need a global description

of the background internal manifold, and in particular one in which both the background

6We observe that this terminology is not always adopted in the literature: the author of [33] calls the

modes in (3.3) brane coordinate fields, whereas the authors of [34] choose the name branons.
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brane positions can be well described. To this end, we cover the manifold with two coor-

dinate patches. First we define the complex coordinates z, z̄, with:

z = η eiϕ where η = e
R ρ
ρ0

e−B/2

(3.4)

for some arbitrary ρ0. The metric on the internal manifold becomes:

ds2 = dρ2 + eBdϕ2 =
eB(ρ(zz̄))

zz̄
(dz dz̄) . (3.5)

Using the behaviour of eB as ρ → 0 (eB → (α r2
1/r

2
0)

2ρ2), one can show that the brane at

ρ = 0 is now well described by the single point z = 0. Meanwhile, in analogy with standard

stereographic coordinates, the point ρ = ρ̄ cannot be covered by z, z̄. We therefore use a

different coordinate patch to describe the brane there, defined by ζ, ζ̄ with:

ζ =
1

η
e−iϕ . (3.6)

In this patch the brane at ρ = ρ̄ is well-defined at ζ = 0, and it is the brane at ρ = 0 which

is not covered. In the overlap, the two coordinate systems are related by ζ = 1/z, ζ̄ = 1/z̄.

Notice that this confirms that the internal space is conformally CP 1.

Now one can immediately see that the background brane positions are the fixed points

under the orbifold identification

z ↔ −z , ζ ↔ −ζ (3.7)

Thanks to the argument that we have just discussed, the orbifold action defined in (3.7) is

globally defined: this is because the two patches defined in (3.4) and (3.6) together cover the

whole internal space. The brane fluctuations, δY z(x), δY z̄(x) and δY ζ(x), δY ζ̄(x), being

both7 odd under the orbifold action, are thus projected out. This orbifold also acts on the

bulk fields in a way that the combinations of the bulk fields, which mix with the brane

bending modes, are odd8 and therefore vanish on the branes. This observation also shows

that projecting out the brane bending modes with the orbifold defined here is consistent

with the equations of motion.

Here we also observe that our orbifolding is different from the one considered in [35],

in the context of 5D brane worlds: there the authors introduced an orbifold whose fixed

point is at the perturbed brane position Y +δY , under which the bending mode δY is even

(invariant), whereas we are considering an orbifold whose fixed point is at the background

brane position Y , under which δY is odd. This explains why the brane bending modes

were not projected out in [35], contrary to what happens in our case.

7We note that our proof that the brane bending modes of both the branes are projected out by (3.18)

is made for a particular internal space having spherical topology, and therefore such a result might not be

applicable in the most general codimension 2 scenario.
8This is a consequence of the fact that Identification (3.7) can be regarded as a particular coordinate

transformation and the lagrangian is invariant under coordinate transformations: the combinations of the

bulk fields that mix with the brane bending modes must be odd in order to create an even (invariant) term

in the lagrangian.
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3.2 Hyperscalars

It is straightforward to see that the hyperscalars do not mix with the other sectors at the

level of the bilinear action. Moreover, we can quite directly conclude they cannot give rise

to tachyonic instabilities: this is a consequence of the fact that the potential v(Φ) has a

global minimum at Φ = 0, and also that the metric gαβ(Φ) is positive definite. Therefore,

the contributions from the 6D potential and the 2D Laplacian to the mass-squareds in the

Kaluza-Klein mass spectrum are both positive.

3.3 Scalars from the gauge fields

The scalar fluctuations descending from the gauge fields can be divided into two separate

classes. First there are the fluctuations:

{δAρ Q, δAϕ Q} , (3.8)

with the gauge group generator Q corresponding to that of the background monopole.

These will be included in the discussion of the following subsection. Second, there are the

fluctuations
{

δAI
ρ T I , δAI

ϕ T I
}

, (3.9)

with T I being the generators orthogonal to Q, that is Tr(T IQ) = 0. At the bilinear level

the second group does not mix with the first, and nor with any of the other sectors in (3.1)

and (3.2), even if we do not introduce the orbifold. This is a consequence of the form of the

bulk action (2.1), of the Kalb-Ramond field strength (2.2) and of the brane action (2.9).

We will therefore return to the fields (3.9), which are the main focus in the present paper,

in section 4. Possible instabilities are generally lurking in this sector.

3.4 Salam-Sezgin sector

The remaining fields are those which also correspond to the minimal Salam-Sezgin model,

that is with just one U(1)R gauge multiplet:

{

δGµ
µ, δGρρ, δGϕϕ, δGρϕ, δσ, δζ, δBρϕ , δAρ Q, δAϕ Q

}

. (3.10)

Let us here recall the long-known result that the Salam-Sezgin sphere model is marginally

stable, with two and only two massless scalar modes, and a Kaluza-Klein tower of heavy

positive mass-squared modes [17, 37, 25]. One of the massless modes corresponds to the

spontaneous breaking of the global classical scaling symmetry.9 The other is guaranteed

by the unbroken Kalb-Ramond gauge symmetry.10 Since the massless modes are protected

by symmetry arguments, we can argue that small deformations of the sphere solution to

the conical-GGP solution must remain marginally stable.

9The EOMs are invariant under the constant rescaling GMN → λ GMN and eκσ/2
→ λ eκσ/2. Note that

this is only a classical symmetry because the action rescales as SB → λ2 SB .
10This symmetry acts as B → B+dΛ, where B is the two-form with components BMN , and Λ a one-form

gauge parameter. Then the components Bµν are dual to a massless 4D scalar. Meanwhile, the directions

Bρϕ provide the Goldstone boson that is to be eaten by the massive U(1) gauge field in the direction of the

monopole.
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Moreover, ref. [13] analysed explicitly a subsector of (3.10), namely the axially-

symmetric perturbations corresponding to those members that are even under a certain

parity symmetry. By imposing that the perturbations preserve the conical singularities,11

a single massless mode was found, corresponding to the classical scaling symmetry enjoyed

by the field equations.12 All other modes were shown to have positive squared-masses.

4. Linear analysis for scalar fluctuations of the gauge fields

We will now complete the stability analysis for brane world compactifications in anomaly

free models, by considering the final sector

{

δAI
ρ T I , δAI

ϕ T I
}

. (4.1)

In fact, these fields are of particular interest. Indeed, it has long been known that this sector

— and only this sector — can in general contain tachyonic modes in its Kaluza-Klein spectra

for the sphere compactification with a monopole background [24]. It is therefore interesting

to ask what happens to these tachyons if one considers the conical-GGP configuration,

which as we have seen is a warped deformation of the sphere compactification.

As an example, we could consider the anomaly free model of E7×E6×U(1)R, with the

monopole embedded in E6. In this case, the low-energy gauge group is:13 E7 × SO(10) ×
U(1)R × U(1)KK , and the fluctuations covered by our analysis are two sets of scalars

transforming under E7×SO(10)×U(1)R as (133,1)0+(1,45)0+(1,16)0+(1,16)0+(1,1)0,

and in various representations of U(1)KK depending on the monopole number.

In order to keep the analysis of the present sector as general as possible, we choose here

to keep also the modes that are projected out by the orbifold boundary conditions discussed

above. Indeed, the complete spectrum arising from Sector (4.1) can be relevant in the case

in which the presence of the brane bending modes does not lead to any instabilities and

therefore the orbifold is not necessary. On the other hand, if the orbifold were necessary, it

would only project out some of the modes in the full spectra derived below, and so would

not introduce new instabilities. Indeed, as we have already established, the fields in (4.1)

are completely decoupled (in the bilinear lagrangian) from the rest; in particular they do

not mix with the brane bending modes (3.2). We shall explain how to impose the orbifold

conditions on (4.1) after the derivation of the complete spectrum from (4.1) (see the end

of Subsection 5.2).

4.1 Bilinear action

Let us then consider the bilinear action for the fluctuations

Vρ = V I
ρ T I ≡ δAI

ρT
I ,

Vϕ = V I
ϕ T I ≡ δAI

ϕT I (4.2)

11Actually, the general GGP solutions with worse than conical singularities were also considered in [13].
12The second massless mode can be expected amongst the perturbations that are odd under the parity

symmetry.
13In the sphere limit the U(1)KK is promoted to SU(2)KK .
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around the background (2.3). Since T I is orthogonal to Q, the perturbed action simplifies

considerably, having contributions only from the gauge kinetic term in (2.1). After fixing

to the light-cone gauge (see reference [38] and appendix A for details), the result can be

written as:14

S2(V, V ) = −1

2

∫

d6X

√

−Ĝ T r
[

∂µVi∂
µV i + DiVjD

iV j − 2(∂rÂ)2V 2
r

−2(∂rÂ)VrDiV
i + R̂ijV

iV j + 2g FijV
i × V j

]

, (4.3)

where we have introduced dr ≡ eκσ/4dρ, and the indices i, j run over r, ϕ. Also for com-

pactness, we have defined:

Â ≡ A + φ , B̂ ≡ B + φ , φ ≡ κσ/2

ĜMNdXMdXM ≡ eÂηµνdxµdxν + dr2 + eB̂dϕ2 , (4.4)

and all indices are raised and lowered with the background metric ĜMN . R̂ij are the

internal components of the Ricci-tensor defined from the metric ĜMN , and Fij refers to

the background field strength.

Moreover, recall that the covariant derivative in general includes the gauge field back-

ground. In particular, we have

DϕVj = ∇ϕVj − igAϕ[Q,Vj ] (4.5)

with ∇ϕ the Lorentz covariant derivative. Below we will choose a basis of generators such

that:

[Q,T I ] = eIT I , (4.6)

which means that in general they will not be Hermitian. However, we choose the normaliza-

tion Tr(T I†T J) = δIJ , and also define [T I , T J ] = if IJKTK . Also, eI is the corresponding

charge under the U(1) monopole. For example, for the E7×E6×U(1) model, we have eI 6= 0

for the 16 and 16. The Dirac quantization condition (2.11) then gives −eI4αg/(κq) = N I .

In the following, we suppress the index I.

Finally, since our internal space is topologically S2, we shall impose that the fluctua-

tions are periodic functions of ϕ. Therefore, we can apply the following Fourier decompo-

sition:

Vj(X) =
∑

m

Vjm(x, r)eimϕ (4.7)

with m an integer, −∞ < m < ∞.

4.2 The equations of motion and boundary conditions

Next we vary the above action with respect to Vr and Vϕ, perform the Fourier decomposi-

tions (4.7), and project onto the Fourier number m. After a long but standard calculation

14In (4.3) the fluctuation fields Vi have been normalized in a way that the canonical factor −1/2 appears

in front of the kinetic terms.
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we eventually obtain the following coupled equations of motion:

e−ÂM2
mVrm = −∂2

rVrm −
(

2∂rÂ +
1

2
∂rB̂

)

∂rVrm

+

[

e−B̂ (m − egAϕ)2 − (∂rÂ)2 − 1

2
∂rÂ∂rB̂ − ∂2

r Â − 1

2
∂2

r B̂

]

Vrm

+ie−B̂
[(

∂rB̂ − ∂rÂ
)

(m − egAϕ) + 2eg ∂rAϕ

]

Vϕm (4.8)

and

e−ÂM2
mVϕm = −∂2

rVϕm −
(

2∂rÂ − ∂rB̂

2

)

∂rVϕm + e−B̂ (m − egAϕ)2 Vϕm

−i
[(

∂rB̂ − ∂rÂ
)

(m − egAϕ) + 2eg ∂rAϕ

]

Vrm, (4.9)

where M2
m are the eigenvalues of ηµν∂µ∂ν .

At the same time, the variation leads to the following boundary conditions [39, 15]:
∫

d4xdr∂r

[

e2Â+B̂/2δV †
rm

(

∂r − (∂rÂ)
)

Vrm

]

= 0 (4.10)

and
∫

d4xdr∂r

[

e2Â−B̂/2δV †
ϕm

(

∂r −
1

2
(∂rB̂)

)

Vϕm

]

= 0 (4.11)

where we used Tr(T I†T J) = δIJ . Eqs. (4.10) and (4.11) represent the requirement that

the boundary terms in the integration by parts, which is performed in deriving the equa-

tions of motion, vanish. Since the action that we are varying is bilinear, Conditions (4.10)

and (4.11) are bilinear as well. Notice that these are the weakest boundary conditions

possible, which we must apply in order to achieve such a requirement. In principle, with

some physical motivation, we could apply stronger boundary conditions. However, for the

purposes of the stability analysis, since stronger boundary conditions would only eliminate

modes from the physical spectrum, we prefer to remain as general as possible. Condi-

tions (4.10) and (4.11) ensure that the hamiltonian of the effective Schroedinger problem

associated to (4.8) and (4.9) is hermitian15 [39, 15].

Our objective is then to solve these coupled linearized equations, together with their

boundary conditions, in order to deduce the behaviour of the perturbations.

4.3 The Schroedinger problem

We proceed by transforming the system into a pair of coupled Schroedinger equations plus

boundary conditions. This is achieved by introducing the coordinate ξ, defined in (2.4),

and the new variables:

V1m(x, ξ) ≡ eÂ/4+B̂/4Vξm(x, ξ), (4.12)

V2m(x, ξ) ≡ e3Â/4−B̂/4Vϕm(x, ξ) . (4.13)

15We will explicitly show how to reduce (4.8) and (4.9) to an effective Schroedinger problem and comment

more on the hermiticity of its hamiltonian in Subsection 4.3.
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The equations of motion (4.8) and (4.9) then become:

M2V1 = −V ′′
1 +

1

16

[

−4Â′′ − 4B̂′′ +
(

Â′ + B̂′
)2

+ 16eÂ−B̂ (m − egAϕ)2
]

V1

+ieÂ/2−B̂/2
[(

B̂′ − Â′
)

(m − egAϕ) + 2eg A′
ϕ

]

V2 (4.14)

and

M2V2 = −V ′′
2 +

1

16

[

12Â′′ − 4B̂′′ +
(

3Â′ − B̂′
)2

+ 16eÂ−B̂ (m − egAϕ)2
]

V2

−ieÂ/2−B̂/2
[(

B̂′ − Â′
)

(m − egAϕ) + 2eg A′
ϕ

]

V1 , (4.15)

where ′ ≡ ∂ξ and we have suppressed the index m. In other words, the system can then be

described in the following way:

(

−∂2
ξ + U1(ξ) iC(ξ)

−iC(ξ) −∂2
ξ + U2(ξ)

)(

V1(x, ξ)

V2(x, ξ)

)

= M2

(

V1(x, ξ)

V2(x, ξ)

)

, (4.16)

where the Schroedinger potentials are given by

U1 ≡ 1

16

[

−4Â′′ − 4B̂′′ +
(

Â′ + B̂′
)2

+ 16eÂ−B̂ (m − egAϕ)2
]

, (4.17)

U2 ≡ 1

16

[

12Â′′ − 4B̂′′ +
(

3Â′ − B̂′
)2

+ 16eÂ−B̂ (m − egAϕ)2
]

, (4.18)

and the coupling function is

C ≡ eÂ/2−B̂/2
[(

B̂′ − Â′
)

(m − egAϕ) + 2egA′
ϕ

]

. (4.19)

At this stage we can observe that for the conical solution (2.6) the two Schroedinger

potentials are degenerate:

U1 = U2 ≡ U . (4.20)

It is therefore straightforward to diagonalize the system. Indeed, transforming into the

basis:

V±(x, ξ) ≡ 1√
2

(V1(x, ξ) ± iV2(x, ξ)) (4.21)

the matrix equation (4.16) becomes:

(

−∂2
ξ + U(ξ) + C(ξ) 0

0 −∂2
ξ + U(ξ) − C(ξ)

)(

V+(x, ξ)

V−(x, ξ)

)

= M2

(

V+(x, ξ)

V−(x, ξ)

)

. (4.22)

Having decoupled the equations, we should now consider the boundary conditions in

terms of the new basis (4.21). The sum and difference of (4.10), (4.11) lead to the following

constraints:
∫

d4xdξ∂ξ

[

δV †
+

(

∂ξ −
1

4
B̂′

)

V+ + δV †
−

(

∂ξ −
1

4
B̂′

)

V−

]

= 0 (4.23)
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and
∫

d4xdξ∂ξ

[

δV †
+

(

∂ξ −
1

4
B̂′

)

V− + δV †
−

(

∂ξ −
1

4
B̂′

)

V+

]

= 0 . (4.24)

Here we have used that Â′ → 0 at the boundaries, as can be seen from (2.6) and (2.7).

Notice that since the dynamics of V+ and V− are decoupled, we can consider both them and

their variations to be independent. Therefore, choosing first V−(x, ξ) = 0 and δV−(x, ξ) = 0,

and then V+(x, ξ) = 0 and δV+(x, ξ) = 0, we see that the boundary conditions can be

equivalently expressed as16

∫

d4xdξ∂ξ

[

δV †
+

(

∂ξ −
1

4
B̂′

)

V+

]

= 0 (4.25)

and
∫

d4xdξ∂ξ

[

δV †
−

(

∂ξ −
1

4
B̂′

)

V−

]

= 0 . (4.26)

In fact, these conditions ensure that the Hamiltonians in the Schroedinger equations (4.22)

are Hermitian [39, 15], as we discussed at the end of Subsection 4.2, and thus have real

eigenvalues and orthonormal sets of eigenfunctions. We shall therefore refer to them as

Hermiticity Conditions (HCs).

Finally, we recall that in order to derive the physical spectrum of the perturbations

we must also impose the additional constraint of a finite kinetic term in (4.3). Expressed

in term of the decoupled fluctuations (4.21), this implies that:

−1

2

∫

d4xdξ
[

∂µV †
+∂µV+

]

< ∞ (4.27)

and

−1

2

∫

d4xdξ
[

∂µV †
−∂µV−

]

< ∞ . (4.28)

4.4 The spectrum

Having decoupled the equations in terms of the dynamical fields V+m(x, ξ) and V−m(x, ξ)

(restoring momentarily the index m), let us decompose these fields in the standard Kaluza-

Klein way:

V+m(x, ξ) = V+m(x)ψ+m(ξ) ,

V−m(x, ξ) = V−m(x)ψ−m(ξ) . (4.29)

Now, for ψ+ the Schroedinger potential can be written explicitly as:17

U(ξ) + C(ξ) = U0 + u cot2
(

ξ

r0

)

+ u tan2

(

ξ

r0

)

, (4.30)

16Indeed, (V+(x, ξ), 0) and (0, V−(x, ξ)) are both well-defined solutions to the two-by-two Schroedinger

system (4.22). Then (4.25) and (4.26) are both necessary and sufficient boundary conditions. We also

checked explicitly that (4.23), (4.24) and (4.25), (4.26) are equivalent for our final solutions.
17Note that here we have discarded the delta-function contributions to the potential, since they are

dominated by stronger singularities [15].
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where

r2
0U0 ≡ 1

2
+ 2mω − 2(m − N)ω̄ + 2m(m − N)ωω̄,

r2
0u ≡ 3

4
+ m2ω2 + 2mω, r2

0u ≡ 3

4
+ (m − N)2ω̄2 − 2(m − N)ω̄ , (4.31)

and

ω ≡ (1 − δ/2π)−1, ω̄ ≡ (1 − δ/2π)−1. (4.32)

Moreover, the HC reduces to:

lim
ξ→ξ

ψ∗
+

(

−∂ξ +
1

2

1

ξ − ξ

)

ψ+ − lim
ξ→0

ψ∗
+

(

−∂ξ +
1

2ξ

)

ψ+ = 0 (4.33)

and the finiteness of the kinetic energy (4.27) becomes simply the normalizability condition

(NC) on the wavefunction:
∫

dξ|ψ+|2 < ∞ . (4.34)

The potential, HC and NC for ψ− are identical to those for ψ+, but replacing m → −m

and N → −N .

The problem is now of exactly the same form as that treated in [15], where the spectrum

for gauge field and fermion fluctuations was derived. We can therefore follow the same

steps made there. The Schroedinger equation can be transformed into the hypergeometric

equation:

z(1 − z)∂2
zy + [c − (a + b + 1)z] ∂zy − aby = 0, (4.35)

by defining

z = cos2

(

ξ

r0

)

, ψ = zγ (1 − z)β y(z), (4.36)

and, for ψ = ψ+ ,

β ≡ 1

4
(3 + 2mω) , γ ≡ 1

4
[3 − 2(m − N)ω̄] , c ≡ 2 − (m − N)ω̄,

a ≡ 1

2

{

3 + mω − (m − N)ω̄ +

√

r2
0M

2 + 1 + [mω − (m − N)ω̄]2
}

,

b ≡ 1

2

{

3 + mω − (m − N)ω̄ −
√

r2
0M

2 + 1 + [mω − (m − N)ω̄]2
}

. (4.37)

The solution can then be expressed in terms of Gauss’s hypergeometric function, F . For

c 6= 1 the two linearly independent solutions are:

y1(z) ≡ F (a, b, c, z), y2(z) ≡ z1−cF (a + 1 − c, b + 1 − c, 2 − c, z), (4.38)

and so the general solution to the Schroedinger equation is

ψ = K1ψ1 + K2ψ2, (4.39)

with

ψi ≡ zγ(1 − z)βyi (4.40)
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and K1,2 the integration constants. For c = 1 we have ψ1 = ψ2 but we can construct a

linearly independent solution using the Wronskian method and the general solution reads

ψ = K1ψ1 + K2ψ1

∫ ξ dξ′

ψ2
1(ξ

′)
. (4.41)

We must now impose the NC (4.34) and HC (4.33) to select the physical modes. The

explicit calculations are given in appendix C of [15], and so we do not repeat them here.

The final result is the following.

The wavefunctions for ψ+ are:

ψ+ ∝ zγ(1 − z)βF (a, b, c, z), for m ≤ N + 1/ω̄, (4.42)

ψ+ ∝ zγ+1−c(1 − z)βF (a + 1 − c, b + 1 − c, 2 − c, z), for m > N + 1/ω̄. (4.43)

The corresponding squared masses are:

• For m ≤ −1/ω and m ≤ N + 1/ω̄

M2 =
4

r2
0

{

n(n + 1) −
(

n +
1

2

)

[mω + (m − N)ω̄] + m(m − N)ωω̄

}

. (4.44)

• For −1/ω < m ≤ N + 1/ω̄

M2 =
4

r2
0

{

(

n +
3

2

)2

− 1

4
+

(

n +
3

2

)

[mω − (m − N)ω̄]

}

. (4.45)

• For N + 1/ω̄ < m ≤ −1/ω

M2 =
4

r2
0

{

n(n − 1) −
(

n − 1

2

)

[mω − (m − N)ω̄]

}

. (4.46)

• For m > −1/ω and m > N + 1/ω̄

M2 =
4

r2
0

{

n(n + 1) +

(

n +
1

2

)

[mω + (m − N)ω̄] + m(m − N)ωω̄

}

. (4.47)

Here n = 0, 1, 2, . . .. The masses given in (4.44) and (4.45) correspond to the wave func-

tion (4.42) whereas the masses given in (4.46) and (4.47) correspond to the wave func-

tion (4.43). The spectrum for ψ− can be obtained from that above simply by transforming

m → −m and N → −N .

5. Stability analysis

In the preceding section we have analytically derived the complete Kaluza-Klein spectrum

for the scalar fluctuations of the 6D gauge field, for directions in the Lie Algebra of G
orthogonal to the background monopole. We are now ready to analyze the stability of these

fluctuations. Thanks to the canonical kinetic terms, the question amounts to whether or

not there are any tachyonic modes.
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5.1 The sphere case

Let us first describe what happens in the well-known sphere case. To this end, it is illumi-

nating to write the spectrum (4.44)–(4.47) in the following way:

M2 =
4

r2
0

[

l(l + 1) −
(

P

2

)2
]

(5.1)

where, for ψ = ψ+, P = mω − (m − N)ω̄, l = k + |1 + P/2| and we have the following

definition of k in the two cases P > −2 and P ≤ −2:

P > −2 :

• For m ≤ −1/ω

k = n − mω − 1 ≥ 0 (5.2)

• For −1/ω < m ≤ N + 1/ω̄

k = n ≥ 0 (5.3)

• For m > N + 1/ω̄

k = n + (m − N)ω̄ − 1 > 0 (5.4)

P ≤ −2 :

• For m ≤ N + 1/ω̄

k = n + 1 − (m − N)ω̄ ≥ 0 (5.5)

• For N + 1/ω̄ < m ≤ −1/ω

k = n ≥ 0 (5.6)

• For m > −1/ω

k = n + mω + 1 > 0 (5.7)

From here it is easy to confirm that in the sphere limit (ω, ω̄ → 1), the spectrum for ψ+

reduces to the expected form:

R2M2 = l(l + 1) −
(

N

2

)2

multiplicity = 2l + 1 , (5.8)

where R = r0/2 represents the radius of the sphere, l = k + |1 + N/2| and k is an integer

which assumes all possible non-negative values (k = 0, 1, 2, . . .). Recall that the results for

ψ− are obtained by taking m → −m and N → −N . By using this information it is easy

to see that a necessary and sufficient condition for the absence of tachyons in the sphere

case is simply [18]
∣

∣N I
∣

∣ ≤ 1 for every I, (5.9)

where we have restored the Lie algebra index I. To derive Inequality (5.9) one can use

the fact that, in the sphere case, k = 0 is an allowed18 value of k for every m, as can be

checked by means of the definitions (5.2)–(5.7).

18This property does not hold always for the conical-GGP solutions.
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In order to satisfy (5.9) we must have that all the charges eI corresponding to our

sector (3.9) assume just one value, up to their sign. Moreover, we must have that the

absolute value of all the charges in the hypermatter sector, |ei|, is not smaller than |eI |.
These are consequences of the Dirac quantization condition (2.11). If we embed the back-

ground monopole in an Abelian factor of G, these conditions are obviously satisfied as

eI = 0, for all I, in this case. However, for an embedding in a non-Abelian factor of G,

these conditions select only one possibility amongst the anomaly free models presented in

table 1: the E7 × E6 × U(1)R model, with the monopole embedded in E6 under which all

hypermultiplets are singlets [17 – 19].19

5.2 The conical-GGP case

Our purpose is now to see whether or not Condition (5.9) is valid also for the conical-GGP

solutions. To this end one can analyze directly the explicit expressions for the spectrum

given in (4.44)–(4.47) and simply study the inequality M2 ≥ 0 for those four expressions,

which are valid in four different ranges of m. After a long but straightforward computation,

the following results emerge.20 A sufficient condition for the absence of tachyons in the

conical-GGP solution is Constraint (5.9). Thus the warping and brane defects do not

introduce new instabilities. Meanwhile, when both the tensions are non-negative (T ≥ 0

and T ≥ 0), Constraint (5.9) is also a necessary condition for the absence of tachyons.

In this case we have exactly the same situation as in the sphere case, so positive tension

branes have no effect on stability at all. However, when at least one tension is negative

(T < 0 and/or T < 0), we can relax that constraint if the absolute value of a negative

tension is large enough. The latter statement can be proved by analyzing the following

special cases.

(i) T < 0 and T = 0, that is ω < 1 and ω = 1. This case corresponds to a solution with

just one conical defect and a non-trivial warping. Here a necessary and sufficient

condition for the absence of tachyons is

∣

∣N I
∣

∣ ≤ 1 +
1

3ω
for every I. (5.10)

(ii) T = T < 0, that is ω = ω < 1. This set up corresponds to the unwarped rugby ball

compactification with negative deficit angles. In this case a sufficient condition for

the absence of tachyons is

∣

∣N I
∣

∣ ≤ 4

3ω
for every I. (5.11)

19There are other non-trivial examples. For instance, amongst the numerous models given in [20], if we

again take the monopole to lie in a non-Abelian factor, stability selects the SU(2) × U(1)R model with

hyperino representation as follows: seven hyperinos transforming as a 3 of SU(2), two as a 5 and thirty-one

as a 7 [25].
20Recall that we have not imposed the orbifold boundary conditions on the present spectrum. By elim-

inating some of the modes the orbifolding could relax some of the stability conditions. The conditions we

state are, however, certainly sufficient also in this case.
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Some details of the derivation of (5.10) and (5.11) are provided in appendix B. Since ω

appears in the denominator of (5.10) and (5.11), it is clear that we can render stable an

arbitrary large value of |N I | by choosing a small enough value of ω, that is by introducing a

large negative tension brane. For example, if we want to stabilize the value |N I | = 2, which

is unstable in the sphere case, we have to choose a deficit angle δ ≤ −4π in case (5.10),

and δ ≤ −π in case (5.11).

The main conclusion is that the conical-GGP solution is a stable solution for all 6D

gauged supergravities, if we allow arbitrarily negative brane tensions. However, if we

require that there are only non-negative tensions, the stability of the system exactly selects

the same models as in the sphere case (with the additional topological constraint that the

monopole cannot be embedded in U(1)R — see the end of subsection 2.2).

We conclude this section by explaining how to impose the orbifold conditions on the

spectrum found above. Indeed, as we have already discussed, the orbifold could be neces-

sary to avoid instabilities in the presence of negative tension branes. We first observe that

we started from the coordinate system r, ϕ to analyse (4.1), as commented below (4.3).

The fields Vr and Vϕ are even under the orbifold action because, in this coordinate system,

this action is r → r and ϕ → ϕ + π and so dr → dr and dϕ → dϕ. Therefore, imposing

the orbifold on the spectrum consists of removing the odd modes, that is the modes with

m odd. As we have anticipated, the orbifold only projects out some of the modes that we

found21 and so Conditions (5.10) and (5.11) remain sufficient condition for the absence of

tachyons. The main conclusion of the paper is therefore unchanged in the presence of the

orbifold.

6. Conclusions

We have studied the stability of axi-symmetric brane world compactifications (conical-GGP

solutions) in anomaly free, chiral, gauged 6D supergravity. Anomaly freedom is a central

principle of quantum physics, and in six dimensional supergravity it places restrictions on

the possible matter supermultiplets that can be present. Indeed, this lack of arbitrariness

can be considered as one of the theory’s most attractive features. Meanwhile, we remark

that the central results of our work also apply to more general situations. For example,

they are relevant for any 6D gauged supergravity (anomalous or otherwise) which has non-

Abelian gauge groups, and also for the Yang-Mills extensions to the non-supersymmetric

models of [29].

We began by considering the various types of bulk and brane scalar fluctuations that are

present in the model, and in particular how they decouple at the bilinear level. We chose to

project out the brane bending modes by placing the branes at orbifold fixed points. Then,

the Salam-Sezgin sector (i.e. those scalars fluctuations descending from the supergravity-

tensor multiplet and the U(1) gauge multiplet in the direction of the background monopole)

was considered for the axially-symmetric perturbations in [13], and no instabilities were

found.

21This implies that the hamiltonian of the effective Schroedinger problem is hermitian even if we perform

the orbifolding.
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The remaining sectors are then the hyperscalar fluctuations, and those scalar fluctua-

tions of the gauge fields which are orthogonal to the monopole background in the Lie algebra

of G. The hyperscalar fluctuations can immediately be seen to have positive squared-masses

in the 4D effective theory. Therefore, the main efforts in the present article were directed

towards the scalar fluctuations of the said gauge fields, the sector which normally harbours

instabilities.

We used the light-cone gauge to derive the bilinear action for these fluctuations [38].

In this way we obtained the linearized equations of motion, and found them to be a pair of

coupled, second-order ODEs. We transformed them into a pair of Schroedinger equations,

and found that it is possible to decouple them. The problem then reduces to the same

form as that treated in [15], and we analytically derived the full spectra. The exact results

that we obtained enabled us to draw both expected and surprising results, with regards to

the stability of the compactifications.

As was observed long ago for the sphere-monopole compactification of these theo-

ries [24], in general we find a tachyonic instability in the scalar fluctuations of the gauge

fields that are charged under the monopole background. In the case of the sphere, the

necessary and sufficient condition for the absence of tachyons can be written as |N I | ≤ 1,

where N I are the integer monopole numbers carried by each gauge field [18]. If we embed

the monopole background in an Abelian factor of the gauge group, then the compactifi-

cation is stable. However, if the monopole happens to lie in a non-Abelian factor of the

gauge group, then generically the compactification is unstable. For example, amongst the

anomaly free models described in table 1, only one fulfills the necessary condition: the

E7 × E6 × U(1)R model with the monopole embedded in the hidden E6 [17 – 19].

We find that the same condition holds for the conical-GGP solutions that contain

positive tension branes only. It is also a sufficient condition for models which incorporate

negative tension branes. In other words, a GGP compactification is stable if its sphere

limit is stable. Furthermore, with positive tension branes only, a GGP compactification is

unstable if its sphere limit is unstable. However, it becomes possible to relax the constraint

by incorporating large, negative tensions. This seems remarkable, given that negative

tension branes are usually associated with instabilities rather than stability.

Meanwhile, the simplest way to obtain a stable conical-GGP solution appears to be

to embed the monopole in an Abelian factor of the gauge group. Notice that, at least for

the most elegant anomaly free models such as those in table 1, there is typically only one

Abelian gauge factor available, which corresponds to the U(1)R gauged R-symmetry. It is

known, however, from the Dirac quantization condition, that embedding the monopole in

the U(1)R again leads to the requirement of at least one negative tension brane [1, 3]!

We should note, though, that there is actually a host of anomaly free models with

extra drone U(1)’s [19, 20]. For a stable model with only positive tension branes, therefore,

we must turn to one of these or to one of the more “miracolous” models discussed at the

end of Subsection 5.1.

For these reasons, we have also discussed in detail the geometry induced by negative

tension branes. The associated negative deficit angles give rise to so-called saddle-cones. As

noted, the orbifolding projects out the brane-embedding fields, which are usually a source of
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instability for negative tension branes. We mention here that, furthermore, the orbifolding

gives rise to a chiral spectrum for the bulk fermion zero modes. Whilst models with positive

tension branes give rise to a chiral spectrum even without the orbifold projection, those

which include negative tension branes in general include zero modes of both chirality. This

can be observed by considering the spectrum found in [15]. In addition we note that the

main conclusion of ref. [15] — that the Kaluza-Klein mass scale and that of the internal

volume can decouple in the presence of conical defects — also holds for the present mass

spectrum in the case of negative tension branes.

In summary, we find that the conical-GGP solutions with positive tension branes are

stable only for very limited classes of anomaly free theories and monopole embeddings.

Such models, therefore, as used for example in the Supersymmetric Large Extra Dimension

Scenario, are almost unique in character. Meanwhile, somewhat surprisingly, negative

tension branes seem to allow for stability in a much wider class of models. It would

certainly be interesting to obtain some physical intuition as to how the negative tension

branes render unstable sphere compactifications stable.

Finally, given that the generic model is unstable, the big question is: where is the

instability taking it to? Here we comment that since the tachyonic mass has its origin in

the internal part of the 6D gauge kinetic term, which is semi-positive definite, we expect

it to be stabilized at the quartic level. Moreover, the tachyonic masses are found in non-

axially symmetric modes, so we might ask: is there a stable non-axially symmetric brane

world solution to 6D gauged supergravity?
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A. Bilinear action in the light-cone gauge

In order to derive the bilinear action for the scalar fluctuations of the gauge field orthogonal

to the monopole background, we use the results of [38]. In that reference, a formalism

was developed to analyze the spectrum of small perturbations about arbitrary solutions

of Einstein, Yang-Mills and scalar systems, using the light-cone gauge.22 For a warped

background solution, with their scalars inactive, the model turns out to be identical to

ours, up to the latter’s presence of the dilaton.23 In this appendix, we show how our model

can in fact be transformed into exactly the system treated in [38].

22Some discussions of the light cone gauge in field theory are given in [40, 41, 38].
23Our model also contains the Kalb-Ramond field and hyperscalars, but again, for the background and

fluctuations of interest, these sectors does not contribute.
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The bilinear action for the sector of interest about the background (2.3) will have

contributions only from the gauge kinetic term:

S = −1

4

∫

d6X
√
−G

[

eκσ/2GMNGPQTr (FMP FNQ)
]

(A.1)

We can make a conformal transformation to absorb the dilaton by defining ĜMN = eφGMN ,

where we recall that φ ≡ κσ/2. In the new frame, the action is identical to that considered

in [38]:

S = −1

4

∫

d6X

√

−Ĝ
[

ĜMN ĜPQTr (FMP FNQ)
]

(A.2)

The conformal transformation, however, implies that our background metric becomes:

ds2 = eA+φηµνdxµdxν + eφdρ2 + eB+φdϕ2 , (A.3)

which differs from that considered in [38], where ds2 = eAηµνdxµdxν + dρ2 + eBdϕ2. We

therefore make a coordinate tranformation eφ/2dρ ≡ dr, so that our metric can be written

as:

ds2 = eÂηµνdxµdxν + dr2 + eB̂dϕ2 , (A.4)

with Â ≡ A + φ and B̂ ≡ B + φ. The action (A.2) of course remains invariant under the

change of coordinates.

After these tricks, we can follow exactly the same steps performed in [38] to remove

the gauge degrees of freedom and obtain the dynamics of the physical fields. We expand to

bilinear order, transform to light-cone coordinates, fix to the light-cone gauge and eliminate

the redundant degrees of freedom using their equations of motion. The final result, for the

spin-0 fields Vr and Vϕ orthogonal to the background monopole, is then the following

bilinear action:

S2(V, V ) = −1

2

∫

d6X

√

−Ĝ T r
[

∂µVi∂
µV i + DiVjD

iV j − 2(∂rÂ)2V 2
r

−2(∂rÂ)VrDiV
i + R̂ijV

iV j + 2g FijV
i × V j

]

, (A.5)

where now ĜMN , σ and Fij refer to the background fields and Vi to the fluctuations. The

index i runs over r, ϕ and all indices are raised and lowered with ĜMN .

B. Details of stability analysis

In this appendix we give some intermediate steps to obtain the results of Subsection 5.2,

concerning the stability analysis for the conical-GGP solutions in the presence of negative

tension branes. Indeed, only in the presence of at least one negative tension brane our

results differ from the stability constraint given in (5.9) that is valid in the sphere case.

Therefore, as in Subsection 5.2, here we focus on the following special cases

(i) T < 0 and T = 0, that is ω < 1 and ω = 1,

(ii) T = T < 0, that is ω = ω < 1,
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whose analysis is enough to obtain the main results of the present paper. More precisely,

in the following we show how to obtain Constraints (5.10) and (5.11).

Let us first consider Case (i). The mass squared spectrum for the scalar sector (3.9),

which we are interested in, is given in Equations (4.44)–(4.47), for the ψ+ wave function,24

and one has to take into account all of them to perform a complete analysis. However,

here we only consider Equation (4.45) because the analysis of (4.44), (4.46) and (4.47) is

analogous. By using Ansatz (i), Equation (4.45) becomes

λ =

(

n +
3

2

)2

− 1

4
+

(

n +
3

2

)

[mω − (m − N)] , (B.1)

where λ ≡ r2
0M

2/4. We recall that (4.45) is valid for −1/ω < m ≤ N + 1/ω̄, which, for

ω = 1, becomes

mω > −1 and m − N ≤ 1. (B.2)

Now we observe that

λ = n2 + [3 + mω − (m − N)] n + 2 +
3

2
[mω − (m − N)]

≥ 2 +
3

2
[mω − (m − N)] = λ0, (B.3)

where λ0 is λ evaluated at n = 0 and we used 3+mω−(m−N) > 1, which is a consequence

of (B.2). Therefore, we have λ ≥ 0 if λ0 ≥ 0, namely if

mω ≥ m − N − 4

3
. (B.4)

Now we observe that, for m−N ≤ 0, Constraint (B.4) is always satisfied because of (B.2).

Therefore, tachyons can only be present in the case25 m = N + 1 and by plugging this

value of m into (B.4) we obtain

N ≥ −1 − 1

3ω
. (B.5)

The corresponding constraint for ψ− can be obtained by transforming N → −N in (B.5);

this leads to N ≤ 1 + 1/(3ω), which, together with (B.5), gives exactly (5.10). By using a

similar method, we further checked that (5.10) is a necessary and sufficient condition for

λ ≥ 0 for the full spectrum including also (4.44), (4.46) and (4.47).

Let us now consider Case (ii). Again we present only the analysis of Equation (4.45),

which, for ω = ω, is

λ =

(

n +
3

2

)2

− 1

4
+

(

n +
3

2

)

Nω. (B.6)

The mass squared given in (4.45) is valid for −1/ω < m ≤ N + 1/ω̄, which reduces to

mω > −1 and (m − N)ω ≤ 1 (B.7)

24We recall that the spectrum for ψ− can be obtained by transforming m → −m and N → −N .
25We observe that Constraints (B.2) forbid m > N + 1.
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in the case ω = ω. As we did in Case (i), we observe that

λ = n2 + (3 + Nω) n + 2 +
3

2
Nω ≥ 2 +

3

2
Nω = λ0, (B.8)

where we used 3 + Nω > 1, which is a consequence of (B.7). So a sufficient condition for

λ ≥ 0 is

N ≥ − 4

3ω
(B.9)

and, by also taking into account the corresponding constraint for ψ− (N ≤ 4/(3ω)), we

obtain (5.11). Analogously we checked that (5.11) is a sufficient condition for λ ≥ 0

for (4.44), (4.46) and (4.47) as well.
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Quant. Grav. 22 (2005) 2589 [hep-th/0501212].

[37] Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, SUSY breaking and

moduli stabilization from fluxes in gauged 6D supergravity, JHEP 03 (2003) 032

[hep-th/0212091].

[38] S. Randjbar-Daemi and M. Shaposhnikov, A formalism to analyze the spectrum of brane

world scenarios, Nucl. Phys. B 645 (2002) 188 [hep-th/0206016].

[39] H. Nicolai and C. Wetterich, On the spectrum of Kaluza-Klein theories with noncompact

internal spaces, Phys. Lett. B 150 (1985) 347;

G.W. Gibbons and D.L. Wiltshire, Space-time as a membrane in higher dimensions, Nucl.

Phys. B 287 (1987) 717 [hep-th/0109093];

A. Kehagias, On non-compact compactifications with brane worlds, hep-th/9911134.

[40] S. Randjbar-Daemi, A. Salam and J.A. Strathdee, Towards a selfconsistent computation of

vacuum energy in eleven-dimensional supergravity, Nuovo Cim. B84 (1984) 167.

[41] S. Randjbar-Daemi and M.H. Sarmadi, Graviton induced compactification in the light cone

gauge, Phys. Lett. B 151 (1985) 343.

– 27 –

http://arxiv.org/abs/cond-mat/0409558
http://jhep.sissa.it/stdsearch?paper=07%282000%29056
http://arxiv.org/abs/hep-th/0004028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C065019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C065019
http://arxiv.org/abs/hep-th/0102135
http://arxiv.org/abs/gr-qc/0205010
http://jhep.sissa.it/stdsearch?paper=10%282002%29028
http://arxiv.org/abs/hep-th/0207104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C106002
http://arxiv.org/abs/hep-th/0311267
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C085009
http://arxiv.org/abs/hep-ph/9805471
http://jhep.sissa.it/stdsearch?paper=06%282001%29005
http://arxiv.org/abs/hep-ph/0103104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C2778
http://arxiv.org/abs/hep-th/9911055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2589
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2589
http://arxiv.org/abs/hep-th/0501212
http://jhep.sissa.it/stdsearch?paper=03%282003%29032
http://arxiv.org/abs/hep-th/0212091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB645%2C188
http://arxiv.org/abs/hep-th/0206016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB150%2C347
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB287%2C717
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB287%2C717
http://arxiv.org/abs/hep-th/0109093
http://arxiv.org/abs/hep-th/9911134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA%2CB84%2C167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB151%2C343

